Colle du 21 mai 2010

- Géométrie affine : reprise du programme précédent
- Applications affines : Définition, application linéaire associée, formules analytiques en repère cartésien.
- Images directe et réciproque d'un sous-espace affine par une application affine, composition de deux applications affines, application affine bijective, surjective, injective, réciproque d'une application affine bijective, groupe affine, groupe des homothéties-translations.
- Propriétés barycentriques d'une application affine.
- Exemples d'applications affines : homothétie, translation, projection affine, symétrie affine, affinités.
- Géométrie affine euclidienne du plan et de l'espace.
- Distances et angles.

Exercice Soit f une application qui préserve les barycentres. Montrer que f est affine.

Exercice Déterminer l'ensemble des isométries affines qui laissent stable le graphe du sinus.

Exercice Soit C l'enveloppe convexe de n points s_1, \ldots, s_n . Montrer que si \mathcal{E} est un disque elliptique inclus dans C et contenant s_1 , alors \mathcal{E} est dégénérée (c'est-à-dire réduite à un segment).

Exercice Soit E un espace euclidien, M_0 , M_1 et M_2 trois points distincts de E. On pose, pour tout $n \in \mathbb{N}$, $M_{n+3} = \frac{1}{3} (M_{n+2} + M_{n+1} + M_n)$. Étude du comportement de $(M_n)_{n\geq 0}$ quand n tend vers l'infini?

Exercice On considère deux repères d'un plan affine P, et Γ l'ensemble des points qui ont les mêmes coordonnées dans les deux repères. À quelle condition nécessaire et suffisante Γ n'est pas réduit au vecteur nul? Dans telle situation, décrire Γ (souvent une droite).

Exercice Montrer que si f conserve les isobarycentres, alors f est affine (exercice à vérifier).